3.83 \(\int \frac {d+e x^2}{(a^2+2 a b x^2+b^2 x^4)^{3/2}} \, dx\)

Optimal. Leaf size=156 \[ \frac {x (a e+3 b d)}{8 a^2 b \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {x (b d-a e)}{4 a b \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (a+b x^2\right ) (a e+3 b d) \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )}{8 a^{5/2} b^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}} \]

[Out]

1/8*(a*e+3*b*d)*x/a^2/b/((b*x^2+a)^2)^(1/2)+1/4*(-a*e+b*d)*x/a/b/(b*x^2+a)/((b*x^2+a)^2)^(1/2)+1/8*(a*e+3*b*d)
*(b*x^2+a)*arctan(x*b^(1/2)/a^(1/2))/a^(5/2)/b^(3/2)/((b*x^2+a)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 156, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {1148, 385, 199, 205} \[ \frac {x (a e+3 b d)}{8 a^2 b \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {x (b d-a e)}{4 a b \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (a+b x^2\right ) (a e+3 b d) \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )}{8 a^{5/2} b^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)/(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2),x]

[Out]

((3*b*d + a*e)*x)/(8*a^2*b*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + ((b*d - a*e)*x)/(4*a*b*(a + b*x^2)*Sqrt[a^2 + 2*
a*b*x^2 + b^2*x^4]) + ((3*b*d + a*e)*(a + b*x^2)*ArcTan[(Sqrt[b]*x)/Sqrt[a]])/(8*a^(5/2)*b^(3/2)*Sqrt[a^2 + 2*
a*b*x^2 + b^2*x^4])

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> -Simp[((b*c - a*d)*x*(a + b*x^n)^(p +
 1))/(a*b*n*(p + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /
; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])

Rule 1148

Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + b*x^2 + c*x^
4)^FracPart[p]/(c^IntPart[p]*(b/2 + c*x^2)^(2*FracPart[p])), Int[(d + e*x^2)^q*(b/2 + c*x^2)^(2*p), x], x] /;
FreeQ[{a, b, c, d, e, p, q}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {d+e x^2}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx &=\frac {\left (b^2 \left (a b+b^2 x^2\right )\right ) \int \frac {d+e x^2}{\left (a b+b^2 x^2\right )^3} \, dx}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\\ &=\frac {(b d-a e) x}{4 a b \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left ((3 b d+a e) \left (a b+b^2 x^2\right )\right ) \int \frac {1}{\left (a b+b^2 x^2\right )^2} \, dx}{4 a \sqrt {a^2+2 a b x^2+b^2 x^4}}\\ &=\frac {(3 b d+a e) x}{8 a^2 b \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {(b d-a e) x}{4 a b \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left ((3 b d+a e) \left (a b+b^2 x^2\right )\right ) \int \frac {1}{a b+b^2 x^2} \, dx}{8 a^2 b \sqrt {a^2+2 a b x^2+b^2 x^4}}\\ &=\frac {(3 b d+a e) x}{8 a^2 b \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {(b d-a e) x}{4 a b \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {(3 b d+a e) \left (a+b x^2\right ) \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )}{8 a^{5/2} b^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 108, normalized size = 0.69 \[ \frac {\sqrt {a} \sqrt {b} x \left (a^2 (-e)+a b \left (5 d+e x^2\right )+3 b^2 d x^2\right )+\left (a+b x^2\right )^2 (a e+3 b d) \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )}{8 a^{5/2} b^{3/2} \left (a+b x^2\right ) \sqrt {\left (a+b x^2\right )^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)/(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2),x]

[Out]

(Sqrt[a]*Sqrt[b]*x*(-(a^2*e) + 3*b^2*d*x^2 + a*b*(5*d + e*x^2)) + (3*b*d + a*e)*(a + b*x^2)^2*ArcTan[(Sqrt[b]*
x)/Sqrt[a]])/(8*a^(5/2)*b^(3/2)*(a + b*x^2)*Sqrt[(a + b*x^2)^2])

________________________________________________________________________________________

fricas [A]  time = 0.75, size = 301, normalized size = 1.93 \[ \left [\frac {2 \, {\left (3 \, a b^{3} d + a^{2} b^{2} e\right )} x^{3} - {\left ({\left (3 \, b^{3} d + a b^{2} e\right )} x^{4} + 3 \, a^{2} b d + a^{3} e + 2 \, {\left (3 \, a b^{2} d + a^{2} b e\right )} x^{2}\right )} \sqrt {-a b} \log \left (\frac {b x^{2} - 2 \, \sqrt {-a b} x - a}{b x^{2} + a}\right ) + 2 \, {\left (5 \, a^{2} b^{2} d - a^{3} b e\right )} x}{16 \, {\left (a^{3} b^{4} x^{4} + 2 \, a^{4} b^{3} x^{2} + a^{5} b^{2}\right )}}, \frac {{\left (3 \, a b^{3} d + a^{2} b^{2} e\right )} x^{3} + {\left ({\left (3 \, b^{3} d + a b^{2} e\right )} x^{4} + 3 \, a^{2} b d + a^{3} e + 2 \, {\left (3 \, a b^{2} d + a^{2} b e\right )} x^{2}\right )} \sqrt {a b} \arctan \left (\frac {\sqrt {a b} x}{a}\right ) + {\left (5 \, a^{2} b^{2} d - a^{3} b e\right )} x}{8 \, {\left (a^{3} b^{4} x^{4} + 2 \, a^{4} b^{3} x^{2} + a^{5} b^{2}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="fricas")

[Out]

[1/16*(2*(3*a*b^3*d + a^2*b^2*e)*x^3 - ((3*b^3*d + a*b^2*e)*x^4 + 3*a^2*b*d + a^3*e + 2*(3*a*b^2*d + a^2*b*e)*
x^2)*sqrt(-a*b)*log((b*x^2 - 2*sqrt(-a*b)*x - a)/(b*x^2 + a)) + 2*(5*a^2*b^2*d - a^3*b*e)*x)/(a^3*b^4*x^4 + 2*
a^4*b^3*x^2 + a^5*b^2), 1/8*((3*a*b^3*d + a^2*b^2*e)*x^3 + ((3*b^3*d + a*b^2*e)*x^4 + 3*a^2*b*d + a^3*e + 2*(3
*a*b^2*d + a^2*b*e)*x^2)*sqrt(a*b)*arctan(sqrt(a*b)*x/a) + (5*a^2*b^2*d - a^3*b*e)*x)/(a^3*b^4*x^4 + 2*a^4*b^3
*x^2 + a^5*b^2)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \mathit {sage}_{0} x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

maple [A]  time = 0.01, size = 186, normalized size = 1.19 \[ \frac {\left (a \,b^{2} e \,x^{4} \arctan \left (\frac {b x}{\sqrt {a b}}\right )+3 b^{3} d \,x^{4} \arctan \left (\frac {b x}{\sqrt {a b}}\right )+2 a^{2} b e \,x^{2} \arctan \left (\frac {b x}{\sqrt {a b}}\right )+6 a \,b^{2} d \,x^{2} \arctan \left (\frac {b x}{\sqrt {a b}}\right )+\sqrt {a b}\, a b e \,x^{3}+3 \sqrt {a b}\, b^{2} d \,x^{3}+a^{3} e \arctan \left (\frac {b x}{\sqrt {a b}}\right )+3 a^{2} b d \arctan \left (\frac {b x}{\sqrt {a b}}\right )-\sqrt {a b}\, a^{2} e x +5 \sqrt {a b}\, a b d x \right ) \left (b \,x^{2}+a \right )}{8 \sqrt {a b}\, \left (\left (b \,x^{2}+a \right )^{2}\right )^{\frac {3}{2}} a^{2} b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x)

[Out]

1/8*(a*b^2*e*x^4*arctan(1/(a*b)^(1/2)*b*x)+3*b^3*d*x^4*arctan(1/(a*b)^(1/2)*b*x)+(a*b)^(1/2)*a*b*e*x^3+3*(a*b)
^(1/2)*b^2*d*x^3+2*a^2*b*e*x^2*arctan(1/(a*b)^(1/2)*b*x)+6*a*b^2*d*x^2*arctan(1/(a*b)^(1/2)*b*x)-(a*b)^(1/2)*a
^2*e*x+5*(a*b)^(1/2)*a*b*d*x+a^3*e*arctan(1/(a*b)^(1/2)*b*x)+3*a^2*b*d*arctan(1/(a*b)^(1/2)*b*x))*(b*x^2+a)/(a
*b)^(1/2)/b/a^2/((b*x^2+a)^2)^(3/2)

________________________________________________________________________________________

maxima [A]  time = 1.67, size = 124, normalized size = 0.79 \[ \frac {1}{8} \, d {\left (\frac {3 \, b x^{3} + 5 \, a x}{a^{2} b^{2} x^{4} + 2 \, a^{3} b x^{2} + a^{4}} + \frac {3 \, \arctan \left (\frac {b x}{\sqrt {a b}}\right )}{\sqrt {a b} a^{2}}\right )} + \frac {1}{8} \, e {\left (\frac {b x^{3} - a x}{a b^{3} x^{4} + 2 \, a^{2} b^{2} x^{2} + a^{3} b} + \frac {\arctan \left (\frac {b x}{\sqrt {a b}}\right )}{\sqrt {a b} a b}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="maxima")

[Out]

1/8*d*((3*b*x^3 + 5*a*x)/(a^2*b^2*x^4 + 2*a^3*b*x^2 + a^4) + 3*arctan(b*x/sqrt(a*b))/(sqrt(a*b)*a^2)) + 1/8*e*
((b*x^3 - a*x)/(a*b^3*x^4 + 2*a^2*b^2*x^2 + a^3*b) + arctan(b*x/sqrt(a*b))/(sqrt(a*b)*a*b))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {e\,x^2+d}{{\left (a^2+2\,a\,b\,x^2+b^2\,x^4\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^2)/(a^2 + b^2*x^4 + 2*a*b*x^2)^(3/2),x)

[Out]

int((d + e*x^2)/(a^2 + b^2*x^4 + 2*a*b*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {d + e x^{2}}{\left (\left (a + b x^{2}\right )^{2}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)/(b**2*x**4+2*a*b*x**2+a**2)**(3/2),x)

[Out]

Integral((d + e*x**2)/((a + b*x**2)**2)**(3/2), x)

________________________________________________________________________________________